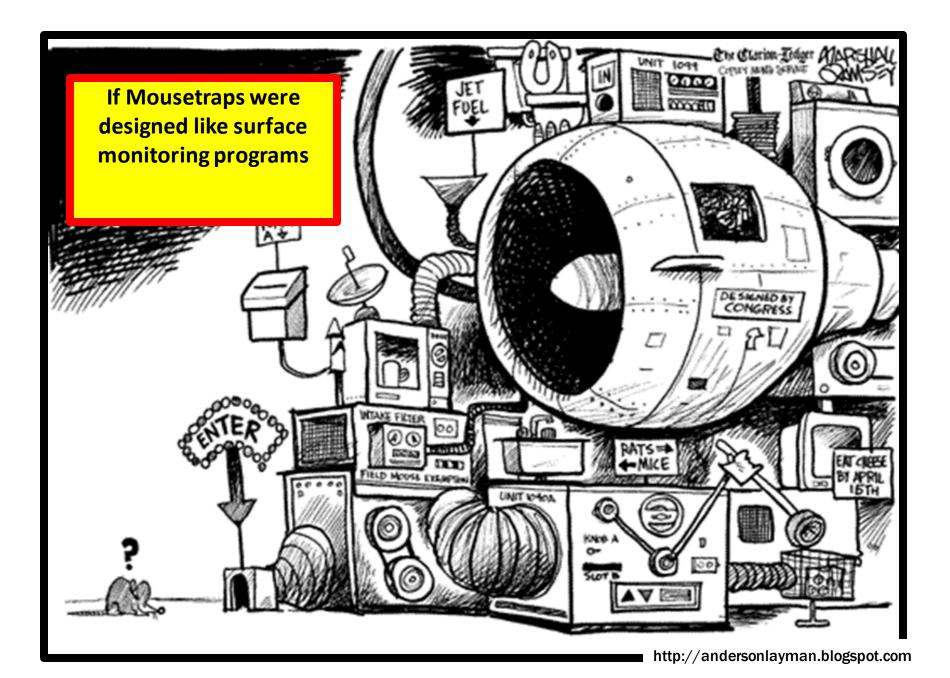

Environmental Monitoring and Risk Perspective – Global Scene Setting


Katherine Romanak Research Professor Gulf Coast Carbon Center The University of Texas at Austin

7th International Workshop on Offshore Geologic CO2 Storage September 17 - 19, 2024 Port Arthur Texas

Environmental Monitoring Overarching Issues

- How much environmental monitoring do we need?
- How big of a leak is important to find?
- Risk of false alarms
- Are we sending mixed messages about leakage?
- Viability of using environmental baseline in a changing world
- Can we meet the regulations?

CO₂ Storage Regulations

Regulatory			OSPAR	EU		US EPA			
Body Monitoring Objectives:	IPCC GHG Guidelines	London Convention and Protocol		CCS Directive	ETS Directive	UIC Class VI well regulation	GHG reporting Subpart RR	UNFCCC Clean Development Mechanism	
Overall Objectives	GHG accounting	Protection of the marine environment	Protection of the marine environment	Protection of the environment	GHG accounting	Protection of the environment (underground sources of drinking water)	GHG accounting	GHG accounting and protection of the environment	

Dixon and Romanak, 2015, International Journal of Greenhouse Gas Control

ISO TC-265 – standards on Capture Performance, Pipeline Transport, Geological Storage, Storage in EOR, Vocabulary

Slight differences but the general workflow is similar among regulations

Global Storage Regulations

- All geologic sites are different
- Regulations are non-prescriptive. Only monitoring "elements" are required
 - Storage performance in the reservoir
 - Initial site characterization (baselines) and environmental (risk) assessment
 - Near-surface anomaly detection
 - Anomaly attribution

Focus on this

- Environmental Assessment
- Leakage accounting
- Project developer and regulator agree on specific approach for each site.
- Expertise/knowledge is required

Success! Attribution in Updates to the Guidance Documents for the EU CCS Directive

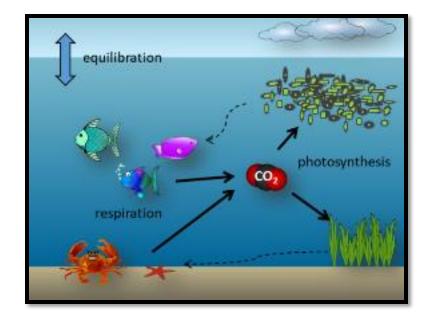
Draft Zero for revised Guidance Document 2:

6

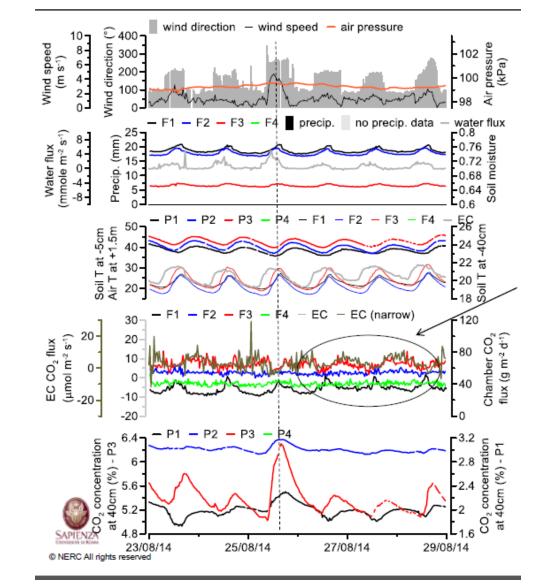
Characterisation of the Storage Complex, CO2 Stream Composition, Monitoring and Corrective Measures

Box 4: Attribution monitoring

Attribution monitoring aims to differentiate naturally occurring CO₂ from CO₂ that has originated from storage operations. Natural processes, such as decay of organic matter, dolomitisation, volcanic activity/ migration of magmatic CO₂ through dikes and sills, and wildfires, can generate CO₂. This is a key consideration in baseline monitoring, so that natural CO₂ can be distinguished from leaked CO₂. Geochemical monitoring methods can sometimes be used to attribute CO₂ to its source.


- Environmental monitoring for leakage out of the storage complex towards, at or near the surface, on land or offshore:
 - Detection of suspected leakage anomaly;
 - Attribution of leakage anomaly;
 - Quantification of leakage;
 - Accounting and quantification of emissions from the storage complex for surrender of emissions trading allowances for any leaked emissions under EU ETS Directive 2003/87/EC (see Section 4.2); Not all emissions are relevant to the EU ETS Directive.
 - Safety and Environmental impacts.

Monitoring Challenge


Common pollutants are foreign to the environment and easily attributed

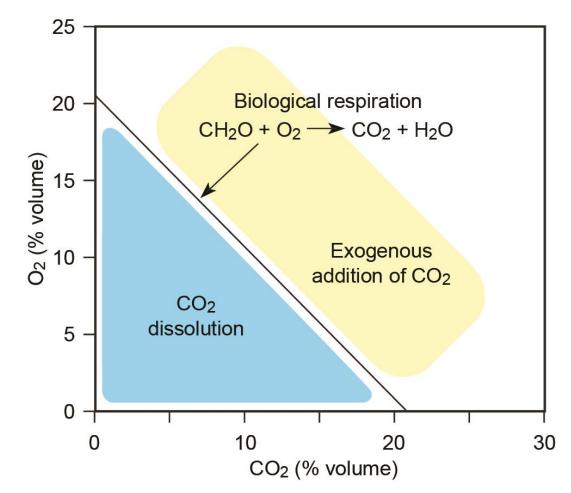
CO₂ is a natural ecosystem component. Source attribution is complex

Dynamic Complexity

Attribution is Complex

 Environmental "Baseline" concentrations are increasing due to climate change – baseline approaches will lead to false positives for leakage (e.g. Tomakomai)

Introduced tracers

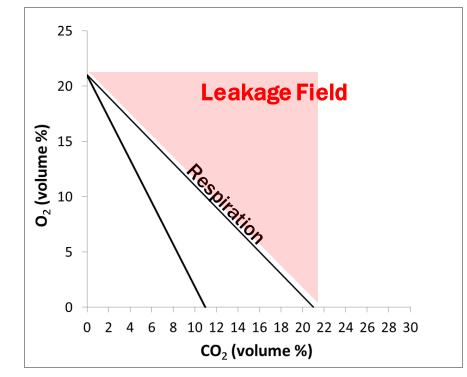

- Expensive
- Not necessarily conservative
- Works in the reservoir but no proof it works to surface

Natural tracers

- Overlap in carbon isotopes
- Carbon 14
- Noble gases complex and difficult to measure
- Multiple sources from hub storage
- Reactivity to surface

Process-Based Soil Gas Ratios

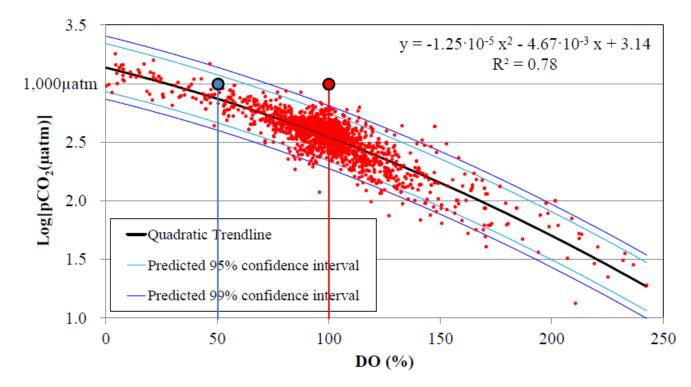
- Based on respiration-the main source of CO2
- Uses simple gas relationships to identify processes.
- No need for years of background.
- Method can be applied in any environment regardless of variability


Romanak et al., 2012, Geophysical Research Letters, 39 (15). Romanak et al., 2014, International Journal of Greenhouse Gas Control, 30, 42-57 Dixon and Romanak, 2015, *International Journal of Greenhouse Gas Control*, 41, 29-40

Ratios Providing "User-Friendly" Monitoring

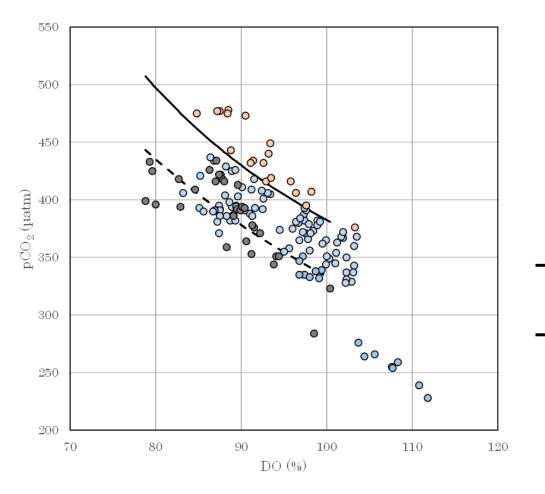
• Respiration line as a universal trigger point

11


- No need for years of baseline- only need a one-time characterization.
- Easy to explain and engage stakeholders
- Instant data reduction and graphical analysis

Katherine Romanak BEG

Bio-oceanographic Method

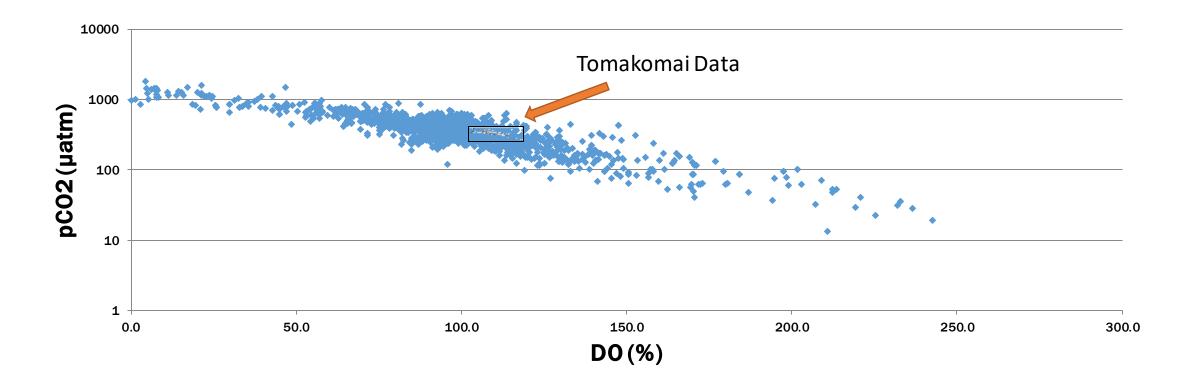

Relationship between DO (%) and Log[pCO₂ (µatm)] Osaka Bay

Jun Kita, MERI, Japan Uchimoto et al.,

Tomakomai Project Japan-Learnings

- Thresholds based on 1 year of baseline data
- False positive for leakage

- Baseline data
- Monitoring data
- Monitoring data False positive
- · Approximate curve of baseline data
 - Upper 95% prediction interval of baseline data


Jun Kita, 2017, 2nd International Workshop on Offshore Geologic CO2 storage

Tomakomai False Positive

- Tomakomai Offshore demonstration project Hokkaido Japan
- Derived leakage thresholds from 1 year of baseline data
- Injection began April 2016 with routine environmental monitoring plan
- May, 2016, operations were halted after 7,163 ton CO₂ was injected
- High CO₂ levels observed in the routine monitoring
- February 2017 operations resumed

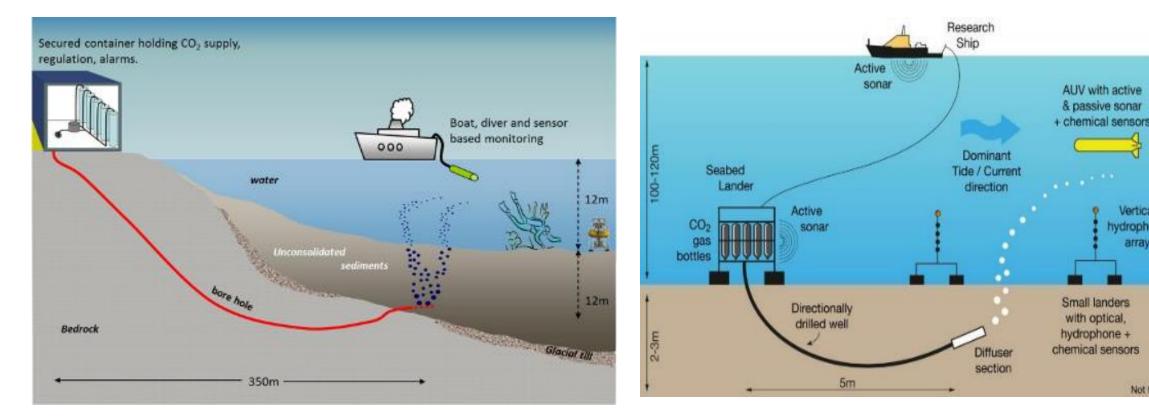
1 year Tomakomai Data Compared to 10 Years of Osaka Bay Data

Scientific Advancements on Impacts

- Learnings from terrestrial CCS projects
- UK and EU offshore projects
 - ECO2
 - RISCS
 - QICS Plymouth Marine Laboratory and
 - STEMM-CCS National Oceanographic Institution Southampton
 - Sonardyne Harbor Trials
- Japan Tomakomai
- Goldeneye and Northern Lights Project
- ANLEC Studies Gippsland Basin Australia
- International Workshop on Offshore Geological CO₂ Storage
- ACT Projects

Offshore Controlled Releases

QICS -Scotland


STEMM-CCS North Sea

Vertical

hydrophone

array

Not to scale

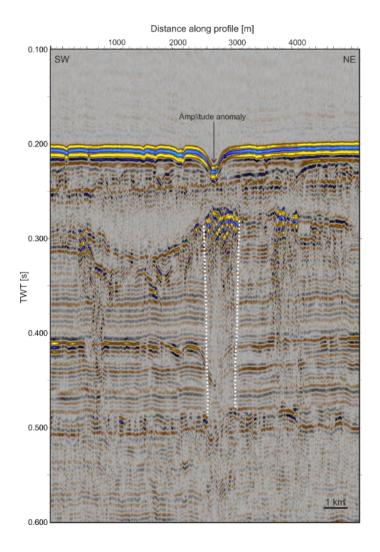
Blackford, et. al., 2014. Nature Climate Change 4, 1011-1016.

https://www.stemm-ccs.eu/

Conclusions:

- CO₂ bubbles were seen in the water column within hours of injection
- Gas chimneys and pock marks could be observed in subsurface/surface sediments by seismic profiling and multibeam sonar
- Up to 35 distinct bubble streams were observed, with flow rates affected by tidal phase.
- ~10% of injected gas escaping as bubbles at low tide
- ~ 85% was retained in the sediments
- Elevated pCO₂ values values where observed in BW at release site varied with tidal phase and injection rate
- Calcite dissolution had a buffering effect on the dissolved CO₂
- No evidence of elevated 'dissolved' flux of DIC
- Impacts were spatially restricted and recovery to background values occurred within a month after terminating the gas release.

Learnings From International Projects


- Leakage is rare need shallow controlled releases to study it!
- Impacts are spatially limited and transient, ecosystem recovery is generally fast.
- The locations of seabed emissions are difficult to predict, even with a well blowout
- CO₂ bubbles, gas chimneys and pock marks can be physically observed in sea bottom sediments
- CO₂ is readily dispersed in the seawater column by tides and currents

Overall conclusion: Impacts of CO_2 leakage are relatively mild. The environment already has uptake mechanisms in place.

Identifying Pathways - Offshore

- Chimney features are common in offshore basins.
- Past or present leakage of fluids/gases.
- Can they act as preferential pathways for CO₂ migration?
- Easily mapped and monitored
- Bubbles are the superpower of offshore monitoring

Commercial Projects Following Suit

Goldeneye Site Permit

Seabed surveys

"Multi Beam Echo Sounder and Side Scan Sonar surveys to observe bubble streams that could indicate leakage. There is no need to disrupt the benthos by the use of intrusive sampling methods unless bubbles or changes are observed which would trigger the contingency monitoring plan"

Northern Lights Fit for Purpose

Flat

pockmarks

Covered with shallow

Sonar investigations

show no gas seepage

No connection to the

deep CO₂ storage

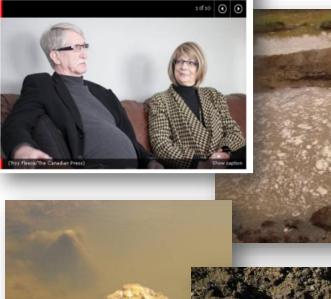
and man support

distant little

Baseline surveys and data

\rightarrow No planned environmental survey before injection

- Seabed surveys
- 4D Seismic baseline
- Regular environmental sediment monitoring in the area
- Extensive databases for O&G risk assessment


Courtesy of Laurence Pinturier

Need Response Plans - Kerr Example

- IEAGHG Weyburn CO₂ Monitoring and Storage project, Saskatchewan Canada
- Farmers perceived environmental change and blamed on the CO₂ storage project
- Attribution protocols for responding to stakeholder concerns were not in place
- Unexperienced consultant wrongly attributed the anomaly to leakage.

THE GLOBE AND MAIL

A Inclusion Carbon capture leak forces Saskatchewan couple to leave farm Published Tuesday, Jan. 11, 2011 6:12PM EST Pair abandon Saskatchewan farm because of blowouts, dead animals and algae

Conclusions- How Should We Monitor?

- General
 - In the offshore we can "see" the leakage bubbles, pockmarks, shallow seismic
 - We have the technology- (AUVs and side scan sonar)
 - Chemical attribution is a very big challenge –don't look for small signals
 - Use a variety of parameters
 - Wells will signal if problems arise
- Characterization and risk assessment
 - Map existing pockmarks and shallow seismic features
 - Do homework on attribution parameters beyond CO_2

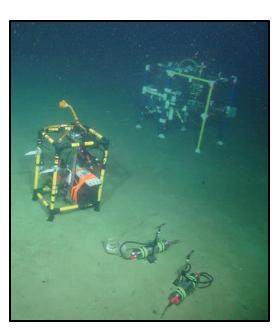
Conclusions- How Should We Monitor?

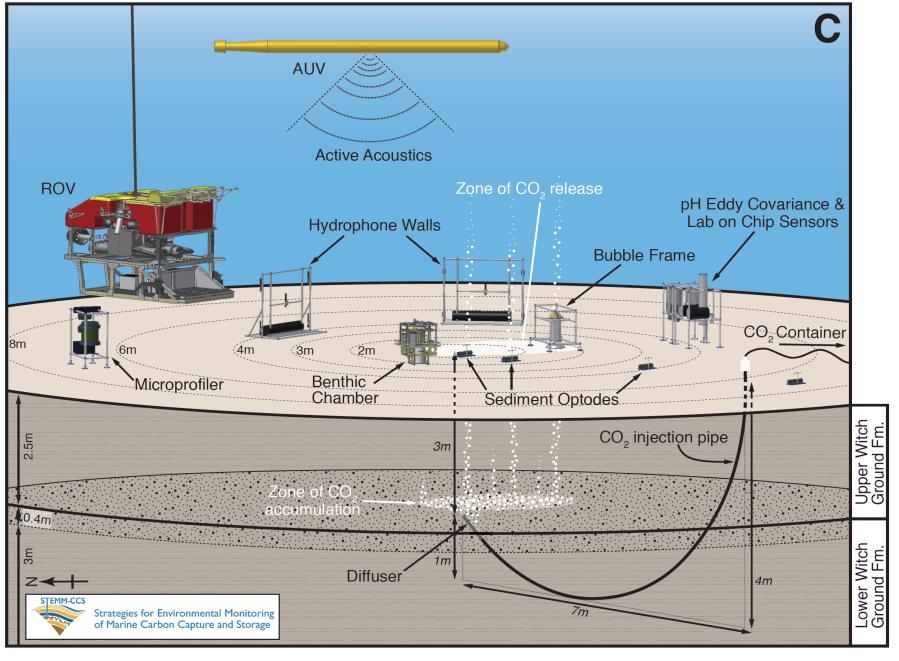
- Operational
 - Risk-based and tiered-
 - Impacts are low and risk of false positives is high
 - De-emphasize routine environmental monitoring
 - Only monitor the environment when there is a reason – look to well-based signals or stakeholder questions
 - Have a plan for attribution in your back pocket
 - Need more dependable performance metrics for regulators

Katherine Romanak Gulf Coast Carbon Center Bureau of Economic Geology The University of Texas at Austin

katherine.romanak@beg.utexas.edu

http://www.beg.utexas.edu/gccc/





Schematic of site and deployed equipment

National Oceanography Centre

Connelly et al. (In Review) Renewable and Sustainable Energy Reviews

noc.ac.uk

Available Monitoring Tools

REPORT NOVEMBER

Recommended practices for measurement, monitoring, and verification plans associated with geologic storage of carbon dioxide

		<== Increasi	ng importance							
	Recommended	Optional	Supporting	Increasing						
	Consider	Consider	Consider	sing com						
	Perform site- sprecific feasibility	Perform site- sprecific feasibility	Perform site- sprecific feasibility	nes, based on Eprage of CO2	M1 Award of Exploration	M2 Award of Storage		M4 Cease Injection/Clo	M5 Transfer Responsibilit	
	Deploy	Deploy	Deploy	nt == >	Phase 1 Assessment	Phase 2 Characterisa tion	Phase 3 Developme nt	Phase 4 Operation	Phase 5 Post- Closure/ Pre Transfer	Phase 6 Post Transfer (as applicable)
Category	MMV Activitie	es								
	Water chemistry monitoring									
rin	Water pH, conductivity, tubidity monitoring									
ito	U-tube fluid sampling									
ы	Isotube fluid sampling???									
Σ	Fluid associated gas analysis									
cal	Artificial tracers: PFCs									
<u> </u>	Artificial tracers: noble gas isotopes									
Jer	Natural tracers: noble gas isotopes									
Geochemical Monitoring	Natural tracers: carbon isotopes									
Ŭ	Natural tracers: halogen isotopes									